D R A F T R E P O R T MODAL ANALYSIS. NATURAL FREQUENCIES AND MODE SHAPES OF 3D BEAM

All dynamic analysis types are based on the following general equation of motion for a finite element system:

$$
\left[M\right]_{n\times n}^{\infty} \left\{\stackrel{\circ}{q}\right\} + \left[C\right]_{n\times n}^{\infty} \left\{\stackrel{\circ}{q}\right\} + \left[K\right]_{n\times n}^{\infty} \left\{\stackrel{\circ}{q}\right\} = \left\{F(t)\right\},\tag{1}
$$

where: [M] mass matrix, [C] damping matrix, [K] stiffness matrix, $\{q\}$ nodal displacement vector, $\{\dot{q}\}$ nodal velocity vector, $\{\ddot{q}\}$ nodal acceleration vector, $\{F(t)\}$ load vector, (t) time.

Modal analysis

For modal analysis, the ANSYS program assumes free (unforced) vibration with no dumping, described by the following equation of motion:

$$
[M] \{q\} + [K] \{q\} = \{0\}
$$

_{n \times n} _{n \times 1} _{n \times 1} _{n \times 1} _{n \times 1} (2)

The equation reduces to the eigenvalue problem:

$$
([K] - \omega^2 [M])\{q\} = \{0\}
$$
\n(3)

We are interested in non-trivial solutions that meet the condition:

$$
\det([K] - \omega^2[M]) = 0\tag{4}
$$

The above condition provides the natural frequencies ω_i . Each natural frequency is associated with the eigenvector $\{q\}$ describing the shape of the deformation at the free vibration with the frequency ω (mode shape). The smallest natural frequency is called fundamental frequency of vibration. The mode shape is defined by relations between DOF – the magnitudes of the nodal displacements have no

meaning. The eigenvector may be arbitrary scaled - it is usually normalized in relation to unity matrix or to \max mass matrix: $\left\lfloor q \right\rfloor_i \left\lbrack M \right\rbrack \{q\}_i = 1$.

P R O B L E M

Find the first 8 natural frequencies and the associated mode shapes of the 3D cantilever beam.

Fig. 1. Cross-section of the beam

The analytical solution for one-dimensional beam model (bending only):

$$
\omega_{1}^{s} = 3.5156 \cdot \frac{1}{l^{2}} \sqrt{\frac{EI}{\rho A}},
$$
\n
$$
\omega_{2}^{s} = 22.0346 \cdot \frac{1}{l^{2}} \sqrt{\frac{EI}{\rho A}},
$$
\n
$$
\omega_{i}^{s} = \left[\frac{(2i-1)\pi}{2} \right]^{2} \cdot \frac{1}{l^{2}} \sqrt{\frac{EI}{\rho A}}, \qquad i = 3, 4, ..., \qquad (5)
$$

ATTENSION on the selection of units: SI (N, m, s, kg) or mod_SI (N, mm, s, t)

D R A F T R E P O R T

Table 1a C A S E 1 . Analyse the cantilever beam using solid elements (Solid185).
Mode | frequency f_{FEM} [Hz] | Natural freq. **@**_{FEM} [rad/s] | Shape description **frequency** f_{FEM} **[Hz] Natural freq.** ω_{FEM} **[rad/s] Table 1b.** Theoretical results for a one-dimensional beam model (**bending only**): **Mode** Natural Frequency ω Theory [rad/s]

Number of elements=................. Number of nodes=...

Table 2 C A S E 2 . Analyse the beam with fixed cross-section at z = 0 and pinned cross-section at z = L

Table 3 C A S E 3 . Analyse the beam with fixed cross-sections.

Table 3 C A S E 4. Analyse the rotating cantilever beam $\omega = 100 \frac{1}{s}$.

➔ **Final report should include:**

- problem description
- short presentation of the FEM model (mesh, boundary conditions)
- table with obtained results (frequencies)
- graphs with distribution of normal stresses σz for the first 8 vibration modes
- discussion of results (comparison with simplified analytical solution)

Conclusions: onclusions: